Temperature-dependent thermal conductivity of Ge2Sb2Te5 polymorphs from 80 to 500 K

Author:

Li Qinshu1ORCID,Levit Or2ORCID,Yalon Eilam2ORCID,Sun Bo13ORCID

Affiliation:

1. Tsinghua-Berkeley Shenzhen Institute, Tsinghua University 1 , Shenzhen 518055, China

2. Viterbi Faculty of Electrical and Computer Engineering, Technion-Israel Institute of Technology 2 , Haifa 3200003, Israel

3. Tsinghua Shenzhen International Graduate School and Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials 3 , Shenzhen 518055, China

Abstract

We report the thermal conductivity of amorphous, cubic, and hexagonal Ge2Sb2Te5 using time-domain thermoreflectance from 80 to 500 K. The measured thermal conductivities are 0.20 W m−1 K−1 for amorphous Ge2Sb2Te5, 0.63 W m−1 K−1 for the cubic phase, and 1.45 W m−1 K−1 for the hexagonal phase at room temperature. For amorphous Ge2Sb2Te5, the thermal conductivity increases monotonically with temperature when T < 300 K, showing a typical glass-like temperature dependence, and increases dramatically after heating up to 435 K due to partial crystallization to the cubic phase. For hexagonal Ge2Sb2Te5, electronic contribution to thermal conductivity is significant. The lattice thermal conductivity of the hexagonal phase shows a relatively low value of 0.47 W m−1 K−1 at room temperature and has a temperature dependence of T−1 when T > 100 K, suggesting that phonon–phonon scattering dominates its lattice thermal conductivity. Although cubic Ge2Sb2Te5 has a similar grain size to hexagonal Ge2Sb2Te5, its thermal conductivity shows a glass-like trend like that of the amorphous phase, indicating a high concentration of vacancies that strongly scatter heat-carrying phonons. These thermal transport mechanisms of Ge2Sb2Te5 polymorphs help improve the thermal design of phase change memory devices for more energy-efficient non-volatile memory.

Funder

National Natural Science Foundation of China

Israel Science Foundation

Shenzhen Science and Technology Innovation Program

Tsinghua Shenzhen International Graduate School

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3