Modeling structure–properties relations in compositionally disordered relaxor dielectrics at the nanoscale

Author:

Gurung Ashok1ORCID,Mangeri John23ORCID,Hagerstrom Aaron M.4,Orloff Nathan D.4ORCID,Alpay S. Pamir13ORCID,Nakhmanson Serge13ORCID

Affiliation:

1. Department of Physics, University of Connecticut 1 , Storrs, Connecticut 06269, USA

2. Materials Research and Technology Department, Luxembourg Institute of Science and Technology 2 , Esch-sur-Alzette, Luxembourg

3. Department of Materials Science & Engineering, and Institute of Materials Science, University of Connecticut 3 , Storrs, Connecticut 06269, USA

4. Communications Technology Laboratory (CTL), National Institute of Standards and Technology (NIST) 4 , 325 Broadway, Boulder, Colorado 80305, USA

Abstract

The solid solution Ba1−xSrxTiO3 (BSTO) displays dielectric response that is highly tunable, while also exhibiting low losses in a broad frequency regime, including the microwave band. Therefore, there is a need for a better understanding of the influence of the BSTO microstructure on its relaxor properties and performance in a variety of technological applications. Since the local polarization in BSTO is strongly dependent on composition, so is its response to an applied AC field. In this work, we have adopted a phase field method to study the frequency-dependent dielectric response of this system while accounting for the local fluctuations in the solid-solution composition. By utilizing a thermodynamic potential that includes spatial dependence on the averaged Sr content, we connected relaxor-like features in the dielectric dispersion to local spatial inhomogeneities, such as average size of Sr- or Ba-rich regions, across a wide range of temperatures. These results show that the adopted simple coarse-grained approach to the relaxor problem is sensitive enough to reveal correlations between the frequency and temperature dependence of the dielectric response and modulations in the material morphology and microstructure.

Funder

Air Force Research Laboratory

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3