Energy-based clustering: Fast and robust clustering of data with known likelihood functions

Author:

Thürlemann Moritz1ORCID,Riniker Sereina1ORCID

Affiliation:

1. Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland

Abstract

Clustering has become an indispensable tool in the presence of increasingly large and complex datasets. Most clustering algorithms depend, either explicitly or implicitly, on the sampled density. However, estimated densities are fragile due to the curse of dimensionality and finite sampling effects, for instance, in molecular dynamics simulations. To avoid the dependence on estimated densities, an energy-based clustering (EBC) algorithm based on the Metropolis acceptance criterion is developed in this work. In the proposed formulation, EBC can be considered a generalization of spectral clustering in the limit of large temperatures. Taking the potential energy of a sample explicitly into account alleviates requirements regarding the distribution of the data. In addition, it permits the subsampling of densely sampled regions, which can result in significant speed-ups and sublinear scaling. The algorithm is validated on a range of test systems including molecular dynamics trajectories of alanine dipeptide and the Trp-cage miniprotein. Our results show that including information about the potential-energy surface can largely decouple clustering from the sampled density.

Funder

National Center of Competence in Research Materials’ Revolution: Computational Design and Discovery of Novel Materials

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Reference67 articles.

1. Survey of clustering algorithms;IEEE Trans. Neural Networks,2005

2. A comprehensive survey of clustering algorithms;Ann. Data Sci.,2015

3. Density-based clustering;Wiley Interdiscip. Rev. Data Min. Knowl. Discovery,2011

4. Algorithms for hierarchical clustering: An overview;Wiley Interdiscip. Rev. Data Min. Knowl. Discovery,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3