Enhanced intensity of Raman signals from hexagonal boron nitride films

Author:

Schaumburg F.1ORCID,Sleziona S.1ORCID,Zöllner M.1ORCID,Dergianlis V.1ORCID,Schleberger M.1ORCID,Geller M.1ORCID,Lorke A.1ORCID,Prinz G.1ORCID

Affiliation:

1. Faculty of Physics and CENIDE, University of Duisburg-Essen , Lotharstr. 1, 47057 Duisburg, Germany

Abstract

Optical spectroscopy is commonly used to study the properties of 2D materials. In order to obtain the best signal-to-noise ratio, it is important to optimize the incoupling of the excitation laser and, at the same time, reduce spurious light reflection. We performed Raman spectroscopy on exfoliated hexagonal boron nitride (hBN) flakes of different thicknesses, placed on a 300 nm SiO2 on Si substrate. By changing the hBN layer thickness, we found a specific thickness, where the Raman signals from the substrate and the hBN showed maximum intensity, whereas the backscattered laser light was suppressed. To explain the increased emission, we calculated the reflectivity and transmissivity of the full layer system (air, hBN, SiO2, and Si) as a function of hBN layer thicknesses for different excitation wavelengths (457, 532, and 633 nm), using the transfer-matrix algorithm. To compare theory with the experiment, we performed Raman measurements with these three different excitation wavelengths on different flakes and determined their thicknesses with AFM measurements. The experimental results are in good agreement with the calculations, which shows the importance of thin film interference to obtain optimum spectroscopic conditions. Since interference colors are easily visible in an optical microscope, this facilitates the choice of optimum flakes for a wide range of optical characterization techniques, including Raman, photoluminescence, and single defect spectroscopy.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3