Theory and experiments of spiral unpinning in the Belousov–Zhabotinsky reaction using a circularly polarized electric field

Author:

Amrutha S. V.1ORCID,Sebastian Anupama1ORCID,Sibeesh Puthiyapurayil1ORCID,Punacha Shreyas12ORCID,Shajahan T. K.1ORCID

Affiliation:

1. Department of Physics, National Institute of Technology Karnataka 1 , Mangalore 575025, India

2. Department of Oral Health Sciences, School of Dentistry, University of Washington 2 , Seattle, Washington 98195, USA

Abstract

We present the first experimental study of unpinning an excitation wave using a circularly polarized electric field. The experiments are conducted using the excitable chemical medium, the Belousov–Zhabotinsky (BZ) reaction, which is modeled with the Oregenator model. The excitation wave in the chemical medium is charged so that it can directly interact with the electric field. This is a unique feature of the chemical excitation wave. The mechanism of wave unpinning in the BZ reaction with a circularly polarized electric field is investigated by varying the pacing ratio, the initial phase of the wave, and field strength. The chemical wave in the BZ reaction unpins when the electric force opposite the direction of the spiral is equal to or above a threshold. We developed an analytical relation of the unpinning phase with the initial phase, the pacing ratio, and the field strength. This is then verified in experiments and simulations.

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3