The contribution of intermolecular spin interactions to the London dispersion forces between chiral molecules

Author:

Geyer M.1,Gutierrez R.1ORCID,Mujica V.23ORCID,Silva J. F. Rivas4ORCID,Dianat A.1ORCID,Cuniberti G.15ORCID

Affiliation:

1. Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany

2. Arizona State University, School of Molecular Sciences, P.O. Box 871604, Tempe, Arizona 85287-1604, USA

3. Kimika Fakultatea, Euskal Herriko Unibertsitatea and Donostia International Physics Center (DIPC), P. K. 1072, 20080 Donostia, Euskadi, Spain

4. Instituto de Física Luis Rivera Terrazas, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J48, Col. San Manuel, Puebla Pue. C. P. 72570, Mexico

5. Dresden Center for Computational Materials Science and Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden, Germany

Abstract

Dispersion interactions are one of the components of van der Waals (vdW) forces that play a key role in the understanding of intermolecular interactions in many physical, chemical, and biological processes. The theory of dispersion forces was developed by London in the early years of quantum mechanics. However, it was only in the 1960s that it was recognized that for molecules lacking an inversion center, such as chiral and helical molecules, there are chirality-sensitive corrections to the dispersion forces proportional to the rotatory power known from the theory of circular dichroism and with the same distance scaling law R−6 as the London energy. The discovery of the chirality-induced spin selectivity effect in recent years has led to an additional twist in the study of chiral molecular systems, showing a close relation between spin and molecular geometry. Motivated by it, we propose in this investigation to describe the mutual induction of charge and spin-density fluctuations in a pair A–B of chiral molecules by a simple physical model. The model assumes that the same fluctuating electric fields responsible for vdW forces can induce a magnetic response via a Rashba-like term so that a spin–orbit field acting on molecule B is generated by the electric field arising from charge density fluctuations in molecule A (and vice versa). Within a second-order perturbative approach, these contributions manifest as an effective intermolecular exchange interaction. Although expected to be weaker than the standard London forces, these interactions display the same R−6 distance scaling.

Funder

Volkswagen Foundation

Deutsche Forschungsgemeinschaft

Transcampus Research Award

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3