Affiliation:
1. Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Space Technology Institute of Physics, No. 100 Feiyan Roud, Chengguan District, Lanzhou, Gansu Province 730000, China
Abstract
Considering the importance of start-up characteristics of the rubidium atomic clock in engineering applications, the objective of this paper is to optimize the start-up characteristics of the rubidium atomic clock by studying the theory of the rubidium atomic frequency standards, especially the light pumping process, and the effect of light intensity on frequency accuracy. Our analysis demonstrated that frequency accuracy is proportional to the light intensity, and hence, we propose a method for actively optimizing the start-up characteristics of the rubidium atomic clock by utilizing the fluctuations in light intensity. Additionally, some related experiments using the proposed method indicate that the light intensity–frequency coefficient of the rubidium atomic clock is improved from 1.84 × 10−9 to 4.21 × 10−10 V−1 within 30 min after the rubidium atomic clock is locked, and also, the lockout time is less than 5 min with a wide working temperature range (0–50 °C), indicating a significant improvement in the start-up characteristics of the rubidium atomic clock.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献