Effect of shock tunnel geometry on shockwave and vortex ring formation, propagation, and head on collision

Author:

Bauer Rachel L.1ORCID,Johnson Emily M.1ORCID,Douglas Alexander D.1ORCID,Johnson Catherine E.1ORCID

Affiliation:

1. Mining and Explosives Engineering Department, Missouri University of Science and Technology , Rolla, Missouri 65409, USA

Abstract

Vortex ring research primarily focuses on the formation from circular openings. Consequently, the role of tunnel geometry is less understood, despite there being numerous research studies using noncircular shock tunnels. This experimental study investigated shockwaves and vortex rings from different geometry shock tunnels from formation at the tunnel opening to head on collision with another similarly formed vortex ring using schlieren imaging and statistical analysis. The velocity of the incident shockwave was found to be consistent across all four shock tunnel geometries, which include circle, hexagon, square, and triangle of the same cross-sectional area. The velocity was 1.2 ± 0.007 Mach and was independent of the tunnel geometry. However, the velocities of the resulting vortex rings differed between the shapes, with statistical analysis indicating significant differences between the triangle and hexagon vortex velocities compared to the circle. Vortex rings from the square and circle shock tunnels were found to have statistically similar velocities. All vortex rings slowed as they traveled due to corner inversion and air drag. All shock tunnels with corners produce a wobble in the vortex rings. Vortex rings interact with opposing incident shockwaves prior to colliding with each other. Vortex velocity before and after shock–vortex interaction was measured and evaluated, showing statistically similar results. Shock–vortex interaction slows the shockwave upon interaction, while the shock–shock interaction resulted in no change in shock velocity. Although the vortex rings travel at different velocities, all head-on vortex ring collisions produce a perpendicular shockwave that travels at 1.04 ± 0.005 Mach.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3