Superconductivity determined by the S–H framework in CH4-inserted S–H framework hydrides under high pressures

Author:

Yao Shunwei1ORCID,Hu Wenjing1,Wang Ben1,Peng Lin1ORCID,Shi Tingting2,Liu Xiaolin1,Chen Jing1,Lin Jia1ORCID,Yao Dao-Xin3ORCID,Chen Xianfeng45ORCID

Affiliation:

1. Department of Physics, Shanghai University of Electric Power 1 , Shanghai 200090, China

2. Department of Physics, Jinan University 2 , Guangzhou 510632, China

3. State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University 3 , Guangzhou 510275, China

4. State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University 4 , Shanghai 200240, China

5. Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University 5 , Jinan 250358, China

Abstract

Recently, a debate is raising the concern of possible carbonaceous sulfur hydrides with room-temperature superconductivity around 270 GPa. In order to systematically investigate the structural information and relevant natures of C–S–H superconductors, we performed an extremely extensive structure search and first-principles calculations under high pressures. As a result, the metastable stoichiometries of CSH7, C2SH14, CS2H10, and CS2H11 were unveiled under high pressure, which can be viewed as CH4 units inserted into the S–H framework. Given the super-high superconductivity of Im3̄m-SH3, we performed electron–phonon coupling calculations of these compounds,the metastable of R3m-CSH7, Cm-CSH7, Cm-CS2H10, P3m1-CS2H10, Cm-CS2H11, and Fmm2-CS2H11 are predicted to become good phonon-mediated superconductors that could reach Tc of 130, 120, 72, 74, 92, and 70 K at 270 GPa, respectively. Furthermore, we identified that high Tc is associated with the large contribution of the S–H framework to the electron density of states near the Fermi level. Our results highlight the importance of the S–H framework in superconductivity and verify that the suppression of density of states of these carbonaceous sulfur hydrides by CH4 units results in Tc lower than that of Im3̄m-SH3, which could act as a useful guidance in the design and optimization of high-Tc superconductors in these and related systems.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3