Aerodynamic performance of a self-propelled airfoil with a non-zero angle of attack

Author:

Wang Dou1ORCID,Lin Qinfeng12,Zhou Chao3ORCID,Wu Jianghao3

Affiliation:

1. School of Aeronautics and Astronautics, Central South University, Changsha 410083, China

2. Changzhou Huachuang Aviation Technology Co., Ltd., Changzhou 213161, China

3. School of Transportation Science and Engineering, Beihang University, Beijing 100191, China

Abstract

In the natural world, numerous flying creatures generate both thrust and lift by flapping their wings. Aerodynamic mechanisms of forward flight with flapping wings have received much attention from researchers. However, the majority of previous studies have simplified the forward-flight motion of flapping wings to be uniform, and there has been no detailed evaluation of the validity of this simplification. Motivated by this, aerodynamic characteristics of a self-propelled flapping wing with a non-zero angle of attack were investigated. The results showed that the asymmetric leading-edge vortex produced in the wing's upstroke and downstroke leads to transient thrust, driving the self-propelled wing to move with variable forward velocities. Compared to the uniform forward-flight cases, significant losses in lift and severe changes in the flow field were observed in self-propelled flapping wings. In addition, the changes in the aerodynamic performance—including the forward propulsion speed, lift, and power efficiency—of the self-propelled flapping wing with changes in various dimensionless parameters were also investigated. The heaving amplitude was shown to have significant effects on lift and propulsion speed of the self-propelled flapping wing, while the effects of ratio between the airfoil density and fluid density as well as the Reynolds number, were relatively small. In most conditions, when the Strouhal number was in the range 0.2–0.4, the self-propelled flapping wing performed well in terms of both lift generation and propulsive efficiency. These research results suggest that it is necessary to consider the fluctuating forward speed in aerodynamic modeling of propulsive flapping wings.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3