Swirl driven solute mixing in narrow cylindrical channel

Author:

Kumar Dhananjay1,Gaikwad Harshad Sanjay1ORCID,Kaushik P2ORCID,Mondal Pranab Kumar1

Affiliation:

1. Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati 1 , Assam 781039, India

2. Department of Mechanical Engineering, National Institute of Technology Tiruchirappalli 2 , Tamil Nadu 620015, India

Abstract

We investigate the mixing of constituent components transported through a narrow fluidic cylindrical channel in a swirling flow environment. We solve for the flow field analytically using the separation of variables method under the framework of fully developed axial velocity and no-slip condition at fluid–solid interface and validate the same with numerical solution. The swirl velocity profile, which is a function of Reynolds number (Re), exhibits exponential decay along the length of the fluidic channel. We numerically solve the species transport equation for the Peclet number in the range of 102 to 104 coupled with the swirl velocity obtained for 0.1≤Re≤100, by using our in-house developed code essentially for the concentration distribution in the field. As seen, an increase in the Reynolds number results in complete rotation of fluids in the pathway, which, in turn, forms an engulfment flow (onset of chaotic convection) and enhances the underlying mixing efficiency substantially. The results show that inlet swirl promotes advection dominated mixing, while the dominance of advection increases substantially for the higher Reynolds number. We show that adding a small magnitude of swirl velocity at the inlet significantly reduces the channel length required for complete mixing even after the swirl velocity has decayed completely.

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3