Tuning and controlling antiplane shear wave propagation in elastic membranes

Author:

Liu Mao1ORCID,Yu Haijie1,Wang Ben1

Affiliation:

1. Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, Jiangsu 212013, People’s Republic of China

Abstract

In this paper, a rotary-focusing device for the antiplane shear wave is constructed to control and guide elastic wave energy transmission in elastic membranes. The designed device can cloak the antiplane shear waves outside the device and has a rotary-focusing effect on the shear waves energy inside the device in a membrane. The multilayered isotropic material properties of the rotary-focusing device are derived based on the transformation and rotary medium method, and a rotation parameter to guide the propagating trajectories of the antiplane shear waves is introduced. The efficiency of the rotary-focusing device for the antiplane shear waves is verified. The stability of shear wave fields in a membrane with the rotary-focusing device is analyzed to study the performance of rotary-focusing. Numerical examples show that the constructed rotary-focusing device for antiplane shear waves can effectively rotate and focus the antiplane shear wave energy into the device for a wide range of exciting frequencies, which can enhance the antiplane shear energy. Therefore, this study can provide theoretical support for potential applications in the fields of energy harvesting and vibration control.

Funder

National Natural Science Foundation of China

Key University Science Research Project of Jiangsu Province

Basic Research Program of Jiangsu Province

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3