Structure of ZnxFe3−xO4 nanoparticles studied by neutron diffraction and its relation with their response in magnetic hyperthermia experiments

Author:

Lohr J.12ORCID,Tobia D.3ORCID,Torres T. E.4ORCID,Rodríguez L.3ORCID,Puente Orench I.45ORCID,Cuello G. J.5ORCID,Aguirre M. H.4ORCID,Campo J.4ORCID,Aurelio G.12ORCID,Lima E.3ORCID

Affiliation:

1. Comisión Nacional de Energía Atómica–Laboratorio Argentino de Haces de Neutrones, Centro Atómico Bariloche 1 , Av. Bustillo 9500 R8402AGP, S. C. de Bariloche, Argentina

2. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) 2 , S. C. de Bariloche, Argentina

3. Instituto de Nanociencia y Nanotecnología CNEA-CONICET, Centro Atómico Bariloche 3 , S. C. de Bariloche, 8400, Argentina

4. Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza- CSIC 4 , C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain

5. Institut Laue Langevin 5 . 71, Av des Martyrs, BP 156, F-38042, Grenoble, France

Abstract

The mixed zinc-ferrite spinel magnetic nanoparticles (MNPs) with the general formula ZnxFe3−xO4 are among the most extensively studied families of Fe oxides due to their interesting and diverse chemical, electronic, and magnetic properties. These systems offer the possibility of surface functionalization and possess high biocompatibility, making them highly attractive for applications in biomedicine, such as magnetic fluid hyperthermia (MFH). The efficiency of the MFH process relies on the magnetic, structural and morphological properties of the MNPs. The substitution with the Zn ion and the cationic distribution, as well as the synthesis process employed, have a direct impact on the final properties of these oxides. Therefore, it is essential to have tools that enable a comprehensive characterization of the system to assess its performance in MFH. In this study, we have synthesized four ZnxFe3−xO4 MNP systems using three different methods: two by thermal decomposition at high temperatures, one by co-precipitation, and another by co-precipitation followed by ball milling. We analyze the effect of these various synthesis processes on the magnetic and crystallographic properties, aiming to correlate them with the response of each system in MFH. Neutron diffraction data are employed to determine the cation site occupation and to investigate the correlation with the synthesis method. MFH measurements were conducted in media of diverse viscosities, revealing different values of specific loss power, thus demonstrating a clear dependence on the synthesis process and Zn content.

Funder

European Commission

ANPCyT

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3