Linewidth narrowing in self-injection locked lasers: Effects of quantum confinement

Author:

Prokoshin Artem1ORCID,Chow Weng W.2ORCID,Dong Bozhang3,Grillot Frederic45ORCID,Bowers John36ORCID,Wan Yating1ORCID

Affiliation:

1. Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST) 1 , Thuwal 23955-6900, Kingdom of Saudi Arabia

2. Sandia National Laboratories 2 , Albuquerque, New Mexico 87185-1086, USA

3. Institute for Energy Efficiency, University of California 3 , Santa Barbara, California 93106, USA

4. LTCI, Telecom Paris, Institute Polytechnique de Paris 4 , 91120 Palaiseau, France

5. Center for High Technology Materials, University of New-Mexico 5 , Albuquerque, New Mexico 87106, USA

6. Department of Electrical and Computer Engineering, University of California 6 , Santa Barbara, California 93106, USA

Abstract

This paper explores the impact of gain medium on linewidth narrowing in integrated self-injection locked III–V/SiN lasers, theoretically and experimentally. We focus on the effects of carrier densities of states in zero- and two-dimensional structures due to quantum-dot and quantum-well confinement. The theoretical approach includes (a) multimode laser interaction to treat mode competition and wave mixing, (b) quantum-optical contributions from spontaneous emission, and (c) composite laser/free-space eigenmodes to describe outcoupling and coupling among components within an extended cavity. For single-cavity lasers, such as distributed feedback lasers, the model reproduces the experimentally observed better linewidth performance of quantum-dot active regions over quantum-well ones. When applied to integrated III–V/SiN lasers, our analysis indicates Hz-level linewidth performance for both quantum-dot and quantum-well gain media due to overcoming the difference in carrier-induced refractive index by incorporating a high-Q SiN passive resonator. Trade-offs are also explored between linewidth, output power, and threshold current.

Funder

King Abdullah University of Science and Technology

National Nuclear Security Administration

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3