Heat diffusion blurs photothermal images with increasing depth

Author:

Burgholzer P.1ORCID,Mayr G.2ORCID,Thummerer G.2ORCID,Haltmeier M.3ORCID

Affiliation:

1. Research Center for Non Destructive Testing (RECENDT), 4040 Linz, Austria

2. Josef Ressel Center for Thermal NDE of Composites, University of Applied Sciences Upper Austria, 4600 Wels, Austria

3. Department of Mathematics, University of Innsbruck, 6020 Innsbruck, Austria

Abstract

In this Tutorial, we aim to directly recreate some of our “aha” moments when exploring the impact of heat diffusion on the spatial resolution limit of photothermal imaging. Our objective is also to communicate how this physical limit can nevertheless be overcome and include some concrete technological applications. Describing diffusion as a random walk, one insight is that such a stochastic process involves not only a Gaussian spread of the mean values in space, with the variance proportional to the diffusion time, but also temporal and spatial fluctuations around these mean values. All these fluctuations strongly influence the image reconstruction immediately after the short heating pulse. The Gaussian spread of the mean values in space increases the entropy, while the fluctuations lead to a loss of information that blurs the reconstruction of the initial temperature distribution and can be described mathematically by a spatial convolution with a Gaussian thermal point-spread-function. The information loss turns out to be equal to the mean entropy increase and limits the spatial resolution proportional to the depth of imaged subsurface structures. This principal resolution limit can only be overcome by including additional information such as sparsity or positivity. Prior information can be also included by using a deep neural network with a finite degrees of freedom and trained on a specific class of image examples for image reconstruction.

Funder

Österreichische Forschungsförderungsgesellschaft

Austrian Science Fund

Christian Doppler Forschungsgesellschaft

Government/Federal State of Upper Austria

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3