Reflection and transmission properties of a finite-length electron plasma grating

Author:

Lehmann G.1ORCID,Spatschek K. H.1ORCID

Affiliation:

1. Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany

Abstract

Considered here is a plasma grating generated by two counterpropagating short laser pulses. Because of the shortness of the laser pulses, the plasma dynamics are determined by only electrons, which respond to the ponderomotive pressure generated by the interacting laser fields. An electron grating cannot exist for longer than the inverse ion plasma frequency, and so because of the limited time of the ponderomotive pressure, both the life time and spatial extent of an electron grating are finite. When one of the short laser pulses is circularly polarized (propagating in the x direction with electric field vectors in the yz plane) and the other is linearly y-polarized, the electron grating is produced by the y components. Meanwhile, the z component is partially reflected, and only a fraction of it is transmitted. Thus, the finite plasma grating can either alter the polarization of the yz-polarized pulse or act as a pulse splitter. The present paper is focused on the reflection and transmission rates. The action of the density grating on the z component cannot be explained by the Bloch wave theory for infinite crystals, and instead a theory is developed based on four-wave mixing, which explains the transmission and reflection of the z component when interacting with a grating of finite extent.

Funder

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

Subject

Electrical and Electronic Engineering,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3