Hydrodynamics of body–body interactions in dense synchronous elongated fish schools

Author:

Kelly John1ORCID,Menzer Alec1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Virginia , Charlottesville, Virginia 22904, USA

Abstract

Mechanisms for hydrodynamic benefit via fluid interactions in large planar fish schools ( n ≥ 10) are investigated by two-dimensional numerical simulations of carangiform fish swimming. It is observed that the average swimming efficiency of the 10-fish school is increased by 30% over a single swimmer, along with a thrust production improvement of 114%. The performance and flow analyses characterize the associated hydrodynamic interaction mechanisms in large dense schools leading to enhanced performance. First, anterior body suction arises from the proximity of the suction side of the flapping tail to the head of the following fish. Next, the block effect is observed as another fish body blocks the flow behind a fish. Finally, the wall effect enhances the flow of momentum downstream where the body of a neighboring fish acts as a wall for the flapping of a fish tail moving toward it. Because these primary body–body interactions are based on the arrangement of surrounding fish, a classification of the individual fish within the school is presented based on the intra-fish interactions and is reflected in the performance of the individuals. It is shown that the school can be separated as front fish, middle fish, edge fish, and back fish based on the geometric position, performance, and wake characteristics. Finally, groupings and mechanisms observed are proven to be consistent over a range of Reynolds numbers and school arrangements.

Funder

Office of Naval Research

National Science Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference63 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3