Theoretical study of threshold intensity dependence on gas pressure in the breakdown of helium by CO2 laser radiation: Influence of preionization mechanism

Author:

Gamal Yosr E. E.-D.1ORCID,Metwally Ehab. S.2,Nassef O. Aied1

Affiliation:

1. Department of Laser Application in Metrology, Photochemistry, and Agriculture, National Institute of Laser Enhanced Sciences, Cairo University, Giza 12613, Egypt

2. Department of Basic Science, Modern Academy for Engineering and Technology, Cairo 11728, Egypt

Abstract

An electron cascade model adapted to provide a thorough understanding of the physical mechanisms involved in CO2 laser-induced helium plasma is presented. The model combines a time-dependent calculation of the electron energy distribution with rate equations, describing how the population of excited states changes [Y. E. E.-D. Gamal and G. Abdellatif, Appl. Phys. B 117(1), 103 (2014)]. It encountered the possible elastic and inelastic electron collisional processes that enhance the electrons' growth, leading to gas breakdown. The analysis explores the experimental threshold intensity dependency on gas pressure [J. J. Camacho et al., Spectrochim. Acta, Part B 66(1), 57 (2011)]. The measurements are carried out using 9.621  μm over pressure in the range from 12.0 to 87.0 kPa. Since multiphoton ionization is improbable, ionization proceeds via the inverse bremsstrahlung absorption. In this experiment, the ignition of this process is initiated by the experimentally assumed pre-breakdown approach. No experimental estimation was given for the initial electron density. The electron diffusion and the loss of electron energy through elastic collisions have no contribution to this experiment. The calculations of the threshold intensity are performed to determine the initial electron density. The model's validity is assured by the reasonable agreement between the calculated thresholds, and the measured ones are only achieved at a specific initial electron value for each gas pressure. Over pressure exceeding 30.0 kPa, the agreement was reasonable in the presence of recombination losses. The threshold intensity is controlled by the initial electron density for lower pressures. The analysis showed how the gain and loss of electrons control the breakdown threshold for helium concerning the determined initial electron density for the tested pressures.

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3