Affiliation:
1. Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
Abstract
Cholesterol (Chol) plays a crucial role in shaping the intricate physicochemical attributes of biomembranes, exerting a considerable influence on water molecules proximal to the membrane interface. In this study, we conducted molecular dynamics simulations on the bilayers of two lipid species, dipalmitoylphosphatidylcholine (DPPC) and palmitoyl sphingomyelin; they are distinct with respect to the structures of the hydrogen-bond (H-bond) acceptors. Our investigation focuses on the dynamic properties and H-bonds of water molecules in the lipid-membrane systems, with a particular emphasis on the influence of Chol at varying temperatures. Notably, in the gel phase at 303 K, the presence of Chol extends the lifetimes of H-bonds of the oxygen atoms acting as H-bond acceptors within DPPC with water molecules by a factor of 1.5–2.5. In the liquid-crystalline phase at 323 K, on the other hand, H-bonding dynamics with lipid membranes remain largely unaffected by Chol. This observed shift in H-bonding states serves as a crucial key to unraveling the subtle control mechanisms governing water dynamics in lipid-membrane systems.
Funder
Japan Society for the Promotion of Science
Ministry of Education, Culture, Sports, Science and Technology