Scrutinizing pre- and post-device fabrication properties of atomic layer deposition WS2 thin films

Author:

Coleman Emma1ORCID,Monaghan Scott12ORCID,Gity Farzan1ORCID,Mirabelli Gioele1ORCID,Duffy Ray1ORCID,Sheehan Brendan1ORCID,Balasubramanyam Shashank3ORCID,Bol Ageeth A.34ORCID,Hurley Paul12ORCID

Affiliation:

1. Tyndall National Institute, University College Cork 1 , Lee Maltings, Cork T12 R5CP, Ireland

2. School of Chemistry, University College Cork 2 , Cork T12 YN60, Ireland

3. Department of Applied Physics, Eindhoven University of Technology 3 , 5600 MB Eindhoven, The Netherlands

4. Department of Chemistry, University of Michigan 4 , Ann Arbor, Michigan 48109-1055, USA

Abstract

In this work, we investigate the physical and electrical properties of WS2 thin films grown by a plasma-enhanced atomic layer deposition process, both before and after device fabrication. The WS2 films were deposited on thermally oxidized silicon substrates using the W(NMe2)2(NtBu)2 precursor and a H2S plasma at 450 °C. The WS2 films were approximately 8 nm thick, measured from high-resolution cross-sectional transmission electron imaging, and generally exhibited the desired horizontal basal-plane orientation of the WS2 layers to the SiO2 surface. Hall analysis revealed a p-type behavior with a carrier concentration of 1.31 × 1017 cm−3. Temperature-dependent electrical analysis of circular transfer length method test structures, with Ni/Au contacts, yielded the activation energy (Ea) of both the specific contact resistivity and the WS2 resistivity as 100 and 91 meV, respectively. The similarity of these two values indicates that the characteristics of both are dominated by the temperature dependence of the WS2 hole concentration. Change in the material, such as in sheet resistance, due to device fabrication is attributed to the chemicals and thermal treatments associated with resist spinning and baking, ambient and UV exposure, metal deposition, and metal lift off for contact pad formation.

Funder

European Commission

European Research Council

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3