Reference interaction site model self-consistent field with constrained spatial electron density approach for nuclear magnetic shielding in solution

Author:

Imamura Kosuke1ORCID,Yokogawa Daisuke2ORCID,Higashi Masahiro1ORCID,Sato Hirofumi13ORCID

Affiliation:

1. Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan

2. Graduate School of Arts and Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan

3. Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan

Abstract

We propose a new hybrid approach combining quantum chemistry and statistical mechanics of liquids for calculating the nuclear magnetic resonance (NMR) chemical shifts of solvated molecules. Based on the reference interaction site model self-consistent field with constrained spatial electron density distribution (RISM–SCF–cSED) method, the electronic structure of molecules in solution is obtained, and the expression for the nuclear magnetic shielding tensor is derived as the second-order derivative of the Helmholtz energy of the solution system. We implemented a method for calculating chemical shifts and applied it to an adenine molecule in water, where hydrogen bonding plays a crucial role in electronic and solvation structures. We also performed the calculations of 17O chemical shifts, which showed remarkable solvent dependence. While converged results could not be sometimes obtained using the conventional method, in the present framework with RISM–SCF–cSED, an adequate representation of electron density is guaranteed, making it possible to obtain an NMR shielding constant stably. This introduction of cSED is key to extending the method’s applicability to obtain the chemical shift of various chemical species. The present demonstration illustrates our approach’s superiority in terms of numerical robustness and accuracy.

Funder

Japan Society for the Promotion of Science

Institute for Molecular Science

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3