Affiliation:
1. Departamento de Análisis y Matemática Aplicada, Universidad Complutense de Madrid 1 , 28040 Madrid, Spain
2. Instituto de Ciencias Matemáticas 2 , 28049 Madrid, Spain
3. Munich Center for Quantum Science and Technology and Zentrum Mathematik, TU München 3 85747 Garching, Germany
Abstract
We consider the spectral gap question for Affleck, Kennedy, Lieb, and Tasaki models defined on decorated versions of simple, connected graphs G. This class of decorated graphs, which are defined by replacing all edges of G with a chain of n sites, in particular includes any decorated multi-dimensional lattice. Using the Tensor Network States approach from [Abdul-Rahman et al., Analytic Trends in Mathematical Physics, Contemporary Mathematics (American Mathematical Society, 2020), Vol. 741, p. 1.], we prove that if the decoration parameter is larger than a linear function of the maximal vertex degree, then the decorated model has a nonvanishing spectral gap above the ground state energy.
Funder
Comunidad de Madrid
Deutsche Forschungsgemeinschaft
Agencia Estatal de Investigación
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献