Abstract
Liquid evaporation from micro/nanoscale pores is widely encountered in cutting-edge technologies and applications. Due to its two- or three-dimensional features, the nano-porous evaporation is less understood compared to the one-dimensional evaporation of a planar liquid surface. This paper reported a novel study of the inter-pore interference effect in nano-porous evaporation, clarifying the variation in the net evaporation rate from individual nanopores when the inter-pore distance, neighboring nanopore diameter, or liquid temperature were changed. Molecular simulation results showed that the reduction in inter-pore distance could enhance the evaporation rate from nanopores by augmenting the vapor convection effect and suppressing the condensation flux. This interference effect was more pronounced at lower evaporation intensity with the evaporation flux being different by up to 25% from the one-dimensional case. The inter-pore interference was equally observed for Knudsen numbers of 0.1 and 10. Additionally, the non-uniformity in nanopore size distribution had no influence on the evaporative mass flux within the present parameter range. The non-uniformity in nanopore temperatures, however, could affect the net evaporation from individual nanopores, similarly by modulating the vapor convection magnitude in adjacent to the interface and the condensation flux. The effect of inter-pore interference is found to be essential at low evaporation intensity, which is highly relevant in industrial applications such as water evaporation under atmospheric pressure.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Beijing Natural Science Foundation
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献