Directional switches in network-organized swarming systems with delay

Author:

Xiao Rui1ORCID,Li Wang1ORCID,Zhao Donghua2ORCID,Sun Yongzheng1ORCID

Affiliation:

1. School of Mathematics, China University of Mining and Technology 1 , Xuzhou 221116, People’s Republic of China

2. School of Mathematical Sciences, Fudan University 2 , Shanghai 200433, People’s Republic of China

Abstract

Coordinated directional switches can emerge between members of moving biological groups. Previous studies have shown that the self-propelled particles model can well reproduce directional switching behaviors, but it neglects the impact of social interactions. Thus, we focus on the influence of social interactions on the ordered directional switching motion of swarming systems, in which homogeneous Erdös–Rényi networks, heterogeneous scale-free networks, networks with community structures, and real-world animal social networks have been considered. The theoretical estimation of mean switching time is obtained, and the results show that the interplay between social and delayed interactions plays an important role in regulating directional switching behavior. To be specific, for homogeneous Erdös–Rényi networks, the increase in mean degree may suppress the directional switching behaviors if the delay is sufficiently small. However, when the delay is large, the large mean degree may promote the directional switching behavior. For heterogeneous scale-free networks, the increase of degree heterogeneity can reduce the mean switching time if the delay is sufficiently small, while the increasing degree heterogeneity may suppress the ordered directional switches if the delay is large. For networks with community structures, higher communities can promote directional switches for small delays, while for large delays, it may inhibit directional switching behavior. For dolphin social networks, delay can promote the directional switching behavior. Our results bring to light the role of social and delayed interactions in the ordered directional switching motion.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Jiangsu Privience

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3