A review on graphene oxide: 2D colloidal molecule, fluid physics, and macroscopic materials

Author:

Wang Fang1,Fang Wenzhang1ORCID,Ming Xin1ORCID,Liu Yingjun12,Xu Zhen12ORCID,Gao Chao12ORCID

Affiliation:

1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University 1 , 38 Zheda Road, Hangzhou 310027, People's Republic of China

2. Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering 2 , Taiyuan 030032, China

Abstract

Graphene oxide (GO), a mostly known oxidized derivative of graphene, which possesses two-dimensional (2D) topological nature and good dispersity in multiple common solvents as a single layer, has shown unique molecular science and fluid physics. Assembling 2D GO macromolecules into a variety of carbonaceous architectures is recognized as an important nanotechnology to address the challenge of translating the unprecedented mechanical, electrical, and thermal properties of graphene into a macroscopic level. To realize real-world applications of graphene-based materials, sophisticated architecture manipulation spanning from the nanoscale, mesoscale to macroscale is essential to make sure every atom is at the right place. It takes comprehensive understanding of the compositional chemistry, fluid physics, and solid-state physics of 2D GO and graphene. Much effort in studying the graphene solid-state materials has helped people build perspectives on their structure-property relations. Nevertheless, the molecular science and fluid physics of GO that governs the single molecular behavior and collective effects of sheets still lack exploration. Single GO sheet exhibits both colloid behaviors and molecule conformations, which can be viewed as a 2D colloidal macromolecule with special dynamic aggregate and transition behaviors in solvents. Focusing on this topic, we have summarized recent progress in the science, technology, and engineering of 2D GO colloidal macromolecules with particular focus on intriguing features of molecular conformation, lyotropic liquid crystal, slow relaxation behavior, reversible fusion and fission, etc. Novel solvation-triggered hydroplastic processing for graphene-based macroscopic materials will be introduced, followed by the structural principles for high-performance graphene macroscopic materials. Finally, we will wrap up the topic with some perspectives on future research directions and give our opinions on the roadmap toward graphene industrialization.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Shanxi-Zheda Institute of New Materials and Chemical Engineering

Hundred Talents Program of Zhejiang University

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3