Construct Schottky interface containing energy-filtering effect: An efficient strategy to decouple thermopower and conductivity

Author:

Lin Zizhen1ORCID,Ping Xiaofan1ORCID,Zhao Dongming1,Wang Lichuang1ORCID,Li Menglei1,Cai Zihe1,Zhang Yun1,Li Xinlian1ORCID,Zhang Xuankai2ORCID

Affiliation:

1. China Huaneng Clean Energy Research Institute 1 , Beijing 102209, China

2. Institute for Advanced Technology, Shandong University 2 , Shandong, Jinan 250061, China

Abstract

Organic/inorganic thermoelectric hybrids demonstrate great potential for wearable applications. However, their scalability is hindered by an inferior power factor (S2σ). Nowadays, achieving deep optimization of S2σ necessitates a strategy to decouple the Seebeck coefficient (S) and electrical conductivity (σ). In this work, we propose a strategy to break the coupling between S and σ by constructing a Schottky interface that exhibits an energy-filtering effect. We validate the feasibility of this approach using a PANI/TiN–TiO2/carbon paper. The results demonstrate a 1.16-fold increase in σ and a 1.08-fold increase in S in PANI/TiN–TiO2/carbon paper achieved through the construction of a Schottky-type TiN/TiO2 interface. The separation of hole/electron at the TiN/TiO2 interface serves as the scattering center for ionized impurity scattering and facilitates the transport pathway for charge carriers. These factors are crucial in determining the simultaneous optimization of S and σ, respectively. Additionally, the energy-filtering effect of the TiN/TiO2 interface plays a positive role in the ionized impurity scattering mechanism by selectively filtering out low-energy carriers. This further strengthens decoupling of the thermoelectric properties. The 14.9% PANI/11.2% TiN–14.5% TiO2/59.44% carbon paper displays the highest S2σ and achieves a high ZT value of 223.6 μVm−1 K−2 and 0.31 at 300 K, highlighting the advantages of PANI-based thermoelectric hybrids. This work provides valuable guidance for the design of thermoelectric hybrids incorporating multi-interface morphology.

Funder

China Huaneng Group

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3