Affiliation:
1. Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
2. Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 34141, Republic of Korea
Abstract
Plasmonic photoelectrochemical (PEC) water splitting has excited immense interest, as it can overcome the intrinsic limitations of semiconductors, in terms of light absorption, by the localized-surface plasmon resonances effect. Here, to get insight into the role of plasmonic hot carriers in plasmonic water splitting, a rational design of an antenna–reactor type Pt/Ag/TiO2 metal–semiconductor Schottky nanodiode was fabricated and used as a photoanode. Using the designed PEC cell system combined with the Pt/Ag/TiO2 nanodiode, we show that the plasmonic hot carriers excited from Ag were utilized for the oxygen (O2) evolution reaction and, consequently, had a decisive role in the enhancement of the photocatalytic efficiency. These results were supported by finite-difference time-domain simulations, and the faradaic efficiency was measured by the amount of actual gas produced. Therefore, this study provides a deep understanding of the dynamics and mechanisms of plasmonic hot carriers in plasmonic-assisted PEC water splitting.
Funder
Institute for Basic Sciences
The Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea under
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献