Shannon entropy for hydrogen atom in Debye and quantum plasma environment

Author:

Verma Nupur1ORCID,Joshi Rachna2ORCID

Affiliation:

1. Department of Physics, Deen Dayal Upadhyaya College, University of Delhi 1 , New Delhi 110078, India

2. Department of Physics, Acharya Narendra Dev College, University of Delhi 2 , New Delhi 110019, India

Abstract

The plasma screening effect on Shannon entropy values is studied for atomic states of hydrogen under the more general exponential cosine screened Coulomb (MGECSC) potential, which can be used to model Debye and quantum plasmas. The wavefunctions used in the calculation of Shannon entropy are obtained by solving the Schrödinger equation employing the efficient Numerov technique. Shannon entropy is calculated for hydrogen atom quantum levels using various sets of screening parameters to account for the four different potential forms present in the MGECSC potential. The electron density distributions are considerably altered due to the plasma shielding influence on the embedded hydrogen atoms, and this effect is measured by the shift in Shannon entropy. A greater screening influence on entropy is observed in quantum plasma modeled by the MGECSC potential than that in Debye plasma due to the significant combined effects of screening parameters. Excellent convergence is obtained on comparing our results for plasma-free hydrogen atom with the currently available literature. This study is the first to examine the effects of shielding on Shannon entropy of hydrogen atoms in plasmas modeled by the MGECSC potential. These findings will be important for theoretical and experimental research in the disciplines of atomic physics and plasma diagnostics.

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3