Enhanced electrochemical performance of vanadium carbide MXene composites for supercapacitors

Author:

Zahra Syedah Afsheen12,Anasori Babak2,Iqbal Muhammad Z.3,Ravaux Florent4,Al Tarawneh Mohammednoor3,Rizwan Syed1ORCID

Affiliation:

1. Physics Characterization and Simulations Lab (PCSL), Department of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan

2. Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA

3. Department of Chemical and Petroleum Engineering, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates

4. Department of Physics, Khalifa University, Abu Dhabi, United Arab Emirates

Abstract

Two-dimensional (2D) surface-terminated layered transition metal carbide MXenes with high electrochemical performance paved the way for robust energy storage supercapacitor devices. However, because of the 2D nature of the MXene flakes, self-restacking of 2D MXene flakes limits the use of all the flake functionalized surfaces in MXene electrodes. Here, we report the synthesis of V2CT x MXene and multiwall carbon nanotube (MWCNT)/V2CT x composites as a promising electrode material for hybrid energy storage devices. Our hybrid electrodes exhibited enhanced electrochemical performance and a gravimetric capacitance of 1842 F g−1 at a scan rate of 2 mV s−1, with a specific charge capacity of 62.5 A h/g. Moreover, the electrodes presented an excellent rate performance, durability, and retention capacity of 94% lasted up to 10 000 cycles. Density functional theory calculations provided electronic and structural properties of the considered MWCNT@V2CT x. Therefore, the introduction of MWCNTs enhanced the conductivity and reaction kinetics of the MXenes and facilitates the charge storage mechanism useful for next-generation smart energy storage devices.

Funder

Higher Education Commission, Pakistan

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3