Affiliation:
1. Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
Abstract
We investigate the convergence properties of finite-temperature perturbation theory by considering the mathematical structure of thermodynamic potentials using complex analysis. We discover that zeros of the partition function lead to poles in the internal energy and logarithmic singularities in the Helmholtz free energy that create divergent expansions in the canonical ensemble. Analyzing these zeros reveals that the radius of convergence increases at higher temperatures. In contrast, when the reference state is degenerate, these poles in the internal energy create a zero radius of convergence in the zero-temperature limit. Finally, by showing that the poles in the internal energy reduce to exceptional points in the zero-temperature limit, we unify the two main mathematical representations of quantum phase transitions.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献