Role of hot electrons in shock ignition constrained by experiment at the National Ignition Facility

Author:

Barlow D.12ORCID,Goffrey T.1ORCID,Bennett K.1ORCID,Scott R. H. H.3ORCID,Glize K.3ORCID,Theobald W.4ORCID,Anderson K.4ORCID,Solodov A. A.4ORCID,Rosenberg M. J.4ORCID,Hohenberger M.5ORCID,Woolsey N. C.2ORCID,Bradford P.2ORCID,Khan M.2ORCID,Arber T. D.1ORCID

Affiliation:

1. Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

2. Department of Physics, York Plasma Institute, University of York, York YO10 5DQ, United Kingdom

3. Central Laser Facility, STFC, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0QX, United Kingdom

4. Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA

5. Lawrence Livermore National Laboratory, Livermore, California 94550, USA

Abstract

Shock ignition is a scheme for direct drive inertial confinement fusion that offers the potential for high gain with the current generation of laser facility; however, the benefits are thought to be dependent on the use of low adiabat implosions without laser–plasma instabilities reducing drive and generating hot electrons. A National Ignition Facility direct drive solid target experiment was used to calibrate a 3D Monte Carlo hot-electron model for 2D radiation-hydrodynamic simulations of a shock ignition implosion. The [Formula: see text] adiabat implosion was calculated to suffer a 35% peak areal density decrease when the hot electron population with temperature [Formula: see text] and energy [Formula: see text] was added to the simulation. Optimizing the pulse shape can recover [Formula: see text] of the peak areal density lost due to a change in shock timing. Despite the harmful impact of laser–plasma instabilities, the simulations indicate shock ignition as a viable method to improve performance and broaden the design space of near ignition high adiabat implosions.

Funder

Engineering and Physical Sciences Research Council

EUROfusion

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3