Dual hydrodynamic trap based on coupled stagnation point flows

Author:

Boyd Jarrett1ORCID,Hepner Gram1,Ujhazy Maxwell1,Bliss Shawn1,Tanyeri Melikhan1ORCID

Affiliation:

1. Department of Engineering, Rangos School of Health Sciences, Duquesne University , Pittsburgh, Pennsylvania 15282, USA

Abstract

Recent advancements in science and engineering have allowed for trapping and manipulation of individual particles and macromolecules within an aqueous medium using a flow-based confinement method. In this work, we demonstrate the feasibility of trapping and manipulating two particles using coupled planar extensional flows. Using Brownian dynamics simulations and a proportional feedback control algorithm, we show that two micro/nanoscale particles can be simultaneously confined and manipulated at the stagnation points of a pair of interconnected planar extensional flows. We specifically studied the effect of strain rate, particle size, and feedback control parameters on particle confinement. We also demonstrate precise control of the interparticle distance by manipulating the strain rates at both junctions and particle position at one of the junctions. We further discuss the advantages and limitations of the dual hydrodynamic trap in comparison to existing colloidal particle confinement methods and outline some potential applications in polymer science and biology. Our results demonstrate the versatility of flow-based confinement and further our understanding of feedback-controlled particle manipulation.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3