Photodissociation of the CH2Br radical: A theoretical study

Author:

Charfeddine F.12ORCID,Zanchet A.2ORCID,Yazidi O.1ORCID,Cuevas C. A.3ORCID,Saiz-Lopez A.3ORCID,Bañares L.45ORCID,García-Vela A.2ORCID

Affiliation:

1. Laboratoire de Spectroscopie Atomique, Moleculaire et Applications-LSAMA LR01ES09, Faculte des Sciences de Tunis, Universite de Tunis El Manar 1 , 2092 Tunis, Tunisia

2. Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas 2 , Serrano 123, 28006 Madrid, Spain

3. Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC 3 , 28006 Madrid, Spain

4. Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid (Unidad Asociada I+D+i CSIC) 4 , 28040 Madrid, Spain

5. Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanoscience) 5 , 28049 Madrid, Spain

Abstract

Bromine atom (Br) reactions lead to ozone depletion in the troposphere and stratosphere. Photodegradation of bromocarbons is one of the main sources of bromine atoms in the atmosphere. Here, we use high-level ab initio methods, including spin–orbit effects, to study the photodissociation of the CH2Br radical. All possible fragmentation pathways, namely CH2Br + hν → CH2 + Br, HCBr + H, and CBr + H2, have been analyzed. Potential-energy curves of the ground and several excited electronic states along the corresponding dissociating bond distance of each pathway have been calculated. Considering the actinic fluxes of solar irradiation in the troposphere and in the stratosphere in the relevant range of frequencies, it is found that the first five excited states of CH2Br can be accessed from the ground state. Analysis of the potential curves shows that the pathways producing CH2 + Br and HCBr + H can proceed through a fast direct dissociation mechanism, while the pathway leading to CBr + H2 involves much slower dissociation mechanisms like internal conversion between electronic states, predissociation, or tunneling through exit barriers. The main implications are that the two faster channels are predicted to be dominant, and the slower pathway is expected to be less relevant. The tropospheric and stratospheric solar actinic fluxes also allow for further dissociation of the HCBr and CBr fragments, generating additional Br atoms, provided that they survive possible collisions with other atmospheric reagents. Finally, we discuss the possible effect of each of the three CH2Br dissociation pathways on the depletion of atmospheric ozone.

Funder

Ministerio de Ciencia e Innovación

European Research Council Executive Agency Under Horizon 2020 Research and Innovation Programme

European Union’s Horizon 2020

EU-CardioRNA

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3