Nanophotonic phased array XY Hamiltonian solver

Author:

Chalupnik Michelle123ORCID,Singh Anshuman1ORCID,Leatham James4ORCID,Lončar Marko5,Soltani Moe1ORCID

Affiliation:

1. Raytheon BBN Technologies 1 , Cambridge, Massachusetts 02138, USA

2. Department of Physics, Harvard University 2 , Cambridge, Massachusetts 02138, USA

3. Currently with Aliro Quantum 3 , Brighton, Massachusetts 02135, USA

4. Raytheon 4 , El Segundo, California 90245, USA

5. John A. Paulson School of Engineering and Applied Sciences, Harvard University 5 , Cambridge, Massachusetts 01238, USA

Abstract

Solving large-scale computationally hard optimization problems using existing computers has hit a bottleneck. A promising alternative approach uses physics-based phenomena to naturally solve optimization problems, wherein the physical phenomena evolve to their minimum energy. In this regard, photonics devices have shown promise as alternative optimization architectures, benefiting from high-speed, high-bandwidth, and parallelism in the optical domain. Among photonic devices, programmable spatial light modulators (SLMs) have shown promise in solving large scale Ising model problems, to which many computationally hard problems can be mapped. Despite much progress, existing SLMs for solving the Ising model and similar problems suffer from slow update rates and physical bulkiness. Here, we show that using a compact silicon photonic integrated circuit optical phased array (PIC-OPA), we can simulate an XY Hamiltonian, a generalized form of the Ising Hamiltonian, where spins can vary continuously. In this nanophotonic XY Hamiltonian solver, the spins are implemented using analog phase shifters in the optical phased array. The far field intensity pattern of the PIC-OPA represents an all-to-all coupled XY Hamiltonian energy and can be optimized with the tunable phase-shifters, allowing us to solve an all-to-all coupled XY model. Our results show the utility of PIC-OPAs as compact, low power, and high-speed solvers for nondeterministic polynomial-hard problems. The scalability of the silicon PIC-OPA and its compatibility with monolithic integration with CMOS electronics further promise the realization of a powerful hybrid photonic/electronic non-Von Neumann compute engine.

Funder

National Defense Science and Engineering Graduate

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3