Layer- and barrier-dependent spin filtering effect and high tunnel magnetoresistance in FeCl2 based van der Waals junctions

Author:

Hu Lei1ORCID,Han Jiangchao2,Gao Guoying1ORCID

Affiliation:

1. School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology 1 , Wuhan 430074, China

2. Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University 2 , Beijing 100191, China

Abstract

2D magnetic van der Waals (vdW) junctions have attracted intensive attention due to their easily controllable thickness and clear interface compared to conventional magnetic multilayer films, which provide a perfect platform to control the performance of spintronic devices. Herein, based on the experimentally fabricated FeCl2 flaks with interlayer antiferromagnetism and intralayer ferromagnetism, we explore the spin transport properties of two classes of vdW junctions with an Au electrode, Au/FeCl2/Au (FeCl2 as the tunnel barrier) and Au/FeCl2/barrier/FeCl2/Au (MoS2 or graphene as the tunnel barrier), and focus on the effects of different barriers and the number of layers. It is found that from monolayer to bilayer FeCl2 in Au/FeCl2/Au, the spin filtering effect is considerably increased due to the weakened interface effect, and almost complete spin polarized current can be obtained. For Au/FeCl2/MoS2/FeCl2/Au, whether the number of layers of MoS2 or FeCl2 is increased from monolayer to bilayer, the tunnel magnetoresistance (TMR) becomes higher due to the high spin polarization of FeCl2, which can reach 1 374 000%. The high TMR of 763 000% can also be achieved for Au/FeCl2/graphene/FeCl2/Au. This work suggests potential applications for FeCl2 flaks in 2D vdW spin filters and spin valves and will stimulate broad studies on layer- and barrier-controllable vdW spintronic devices. All calculations are performed by using the first-principles combined with non-equilibrium Green's function method.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3