Field-programmable-gate-array-based digital frequency stabilization of low-phase-noise diode lasers

Author:

Avalos Victor1ORCID,Nie Xiaoyu1ORCID,Yang Anbang1ORCID,He Canming2ORCID,Kumar Sunil2ORCID,Dieckmann Kai12ORCID

Affiliation:

1. Centre for Quantum Technologies, National University of Singapore 1 , 3 Science Drive 2, Singapore 117543

2. Department of Physics, National University of Singapore 2 , 2 Science Drive 3, Singapore 117542

Abstract

We present the comparison of a field-programmable-gate-array (FPGA) based digital servo module with an analog counterpart for the purpose of laser frequency stabilization to a high-finesse optical cavity. The transfer functions of both the digital and analog modules for proportional–integral–derivative control are measured. For the lasers stabilized to the cavity, we measure the singe-sideband power spectral density of fast phase noise by means of an optical beat with filtered light transmitted through the cavity. The comparison between the digital and analog modules is performed for two low-phase-noise diode lasers at 1120 and 665 nm wavelengths. The performance of the digital servo module compares well to the analog one for the lowest attained levels of 30 mrad for the integrated phase noise and 10−3 for the relative noise power. The laser linewidth is determined to be in the sub-kHz regime, only limited by the high-finesse cavity. Our work exploits the versatility of the FPGA-based servo module (STEMlab) when used with open-source software and hardware modifications. We demonstrated that such modules are suitable candidates for remote-controlled low-phase-noise applications in the fields of laser spectroscopy and atomic, molecular, and optical physics.

Funder

Ministry of Education–Singapore

National Research Foundation Singapore

A*STAR

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3