Design methodology of adjustable magnetic system for electron devices

Author:

Zhang Cheng1ORCID,Cai Jinchi1ORCID,Yin Pengcheng1,Su Zixuan1ORCID,Zhang Xinke1,Zeng Lin1,Zhang Zhen1,Huan Zhonghui1,Xu Jin1ORCID,Yue Lingna1ORCID,Yin Hairong1,Xu Yong1,Zhao Guoqing1,Wang Wenxiang1,Wei Yanyu1ORCID

Affiliation:

1. School of Electronic Science and Engineering, University of Electronic Science and Technology of China , Chengdu 610000, China

Abstract

A novel design methodology based on a current-tunable magnetic focusing system that can flexibly switch between Brillouin and immersive flow focusing modes is presented in this paper. Such a magnetic system, which comprises cascaded solenoid coils and pole pieces, could be used in beam optics systems of vacuum tubes, particle accelerators, and free-electron lasers. Although the profile of this magnetic system is not brand new, the novel way proposed in this paper to establish and manipulate such a system to fit versatile purposes has never been reported in the literature to the best of the authors' knowledge. The specific structure of the magnetic system should be optimized, starting from the immersive flow focusing mode together with the electron gun design, which will be determined on successful optimization. According to our analysis, such systems could be transformed into the Brillouin bunching mode by simply adjusting the coil currents without modifying the hardware. To verify such an approach, single-beam and multi-beam optical systems are demonstrated in this paper. Moreover, the beam radius in such systems could also be conveniently adjusted via a similar technique.

Funder

National Natural Science Foundation of China

National Key Laboratory Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3