Valence molecular orbitals and cationic structures of 2-fluoropyridine by high-resolution ion spectroscopy and Franck–Condon fitting

Author:

Lee Yu Ran1ORCID,Kwon Chan Ho2ORCID

Affiliation:

1. Forensic Chemistry Division, National Forensic Service, Wonju 26460, Republic of Korea

2. Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea

Abstract

The alteration of the valence molecular orbitals’ ordering of halopyridine molecules, by the introduction of a halogen atom(s) as substituent on the pyridine ring, has spurred an extensive interest for their investigation. Herein, the effect of a fluorine substituent on the two outermost orbitals of pyridine was elucidated by investigating the photoionization dynamics of 2-fluoropyridine (2-FP), considering that the geometrical changes with respect to the neutral geometry induced by adiabatic ionic transition affect the vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectrum. The adiabatic ionization energy associated with the 0-0 band on the measured high-resolution VUV-MATI spectrum was determined to be 9.6702 ± 0.0004 eV (77 995 ± 3 cm−1), which differs considerably from the 9.401 eV by two-color ionization spectroscopy. Franck–Condon simulation of the MATI spectrum corresponded quantitatively with the experimental results. Interestingly, among the forbidden transitions under CS symmetry, an out-of-plane ring-bending mode resulting from the warped cationic structure of 2-FP with C1 symmetry was discovered. Rigorously, among the unassigned peaks, the first prominent peak at 78 532 cm−1 should rather be assigned as the origin of the excited electronic state (D1) of the 2-FP cation, in accordance with time-dependent density functional theory calculations. Natural bond orbital analysis led to the conclusion that such observations could be induced by electron removal from the highest occupied molecular orbital (HOMO) consisting of the π orbital of the pyridine ring and lone-pair orbital of the fluorine atom or from the HOMO-1 of the molecular non-bonding orbitals, to generate the two proximate electronic states of the cation.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3