Current loss experiments of a conical MITL and PHC system on a megaampere-class LTD module

Author:

Hong Yaping1ORCID,Wei Hao2ORCID,Wang Jiachen2,Wu Hanyu2ORCID,Wang Liangping2ORCID,Cheng Chuangsi1ORCID,Li Mo2ORCID,Qiu Aici12

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University 1 , Xian 710049, China

2. National Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology 2 , Xi'an 710024, China

Abstract

A series of current transport experiments of a conical magnetically insulated transmission line (MITL) and a single post-hole convolute (PHC) had been done on a 12-stage linear transformer driver (LTD). The LTD produced a current with a rise time of about 120 ns and a peak varying from 0.5 to 0.8 MA depending on the terminated connection loads. The conical MITL was designed with a constant gap distance of 8 mm, which was equivalent to the MITL segments that are close to the PHC locations in the multi-level conical MITL in tens of megaampere current drivers. A single PHC was also designed to operate at conditions close to those fielded on tens of MA current drivers such as the Z machine. The experiment results indicated that there was almost no current loss along the constant-gap MITL before the peak current even the MITL figure of merit, i.e., E/cB varied from 0.1 to 1. However, the time when current trails appeared gradually advanced. The effects of the geometric sizes on the current transport efficiency of a single PHC were studied. It was indicated that the current transport efficiency of the single PHC was considerable high while the gap distance is larger than 6 mm. Whereas the PHC current loss was increased to about 30% when the gap is 3 mm. The dynamic impedance of the single PHC was obtained. During the pulse, as the plasma diffused, the convolute shunt impedance rapidly decreased, which was consistent with the known mechanism.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3