Theoretical investigation of distal charge separation in a perylenediimide trimer

Author:

Wang Ke1ORCID,Xu Yihe1,Xie Xiaoyu2ORCID,Ma Haibo2ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering, Nanjing University 1 , Nanjing 210023, China

2. Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University 2 , Qingdao, Shandong 266237, China

Abstract

An exciton–phonon (ex–ph) model based on our recently developed block interaction product basis framework is introduced to simulate the distal charge separation (CS) process in aggregated perylenediimide (PDI) trimer incorporating the quantum dynamic method, i.e., the time-dependent density matrix renormalization group. The electronic Hamiltonian in the ex–ph model is represented by nine constructed diabatic states, which include three local excited (LE) states and six charge transfer (CT) states from both the neighboring and distal chromophores. These diabatic states are automatically generated from the direct products of the leading localized neutral or ionic states of each chromophore’s reduced density matrix, which are obtained from ab initio quantum chemical calculation of the subsystem consisting of the targeted chromophore and its nearest neighbors, thus considering the interaction of the adjacent environment. In order to quantum-dynamically simulate the distal CS process with massive coupled vibrational modes in molecular aggregates, we used our recently proposed hierarchical mapping approach to renormalize these modes and truncate those vibrational modes that are not effectively coupled with electronic states accordingly. The simulation result demonstrates that the formation of the distal CS process undergoes an intermediate state of adjacent CT, i.e., starts from the LE states, passes through an adjacent CT state to generate the intermediates (∼200 fs), and then formalizes the targeted distal CS via further charge transference (∼1 ps). This finding agrees well with the results observed in the experiment, indicating that our scheme is capable of quantitatively investigating the CS process in a realistic aggregated PDI trimer and can also be potentially applied to exploring CS and other photoinduced processes in larger systems.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3