Chemical phases in the solution-grown Zn(O,S) buffer of post-annealed Cu(In,Ga)Se2 solar cells investigated by transmission electron microscopy and electroreflectance

Author:

Jin Xiaowei1ORCID,Schneider Reinhard1,Popescu Radian1ORCID,Seeger Jasmin2ORCID,Grutke Jonas2ORCID,Zerulla Benedikt2ORCID,Hetterich Michael23ORCID,Hariskos Dimitrios4ORCID,Witte Wolfram4ORCID,Powalla Michael4,Gerthsen Dagmar1ORCID

Affiliation:

1. Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT) 1 , Karlsruhe 76131, Germany

2. Institut für Angewandte Physik, KIT 2 , Karlsruhe 76131, Germany

3. Lichttechnisches Institut, KIT 3 , Karlsruhe 76131, Germany

4. Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) 4 , Stuttgart 70563, Germany

Abstract

Thin-film solar cells with Cu(In,Ga)Se2 (CIGS) absorber layers have been intensively studied due to their high power conversion efficiencies. CIGS solar cells with Zn(O,S) buffer layers achieved record efficiencies due to their reduced parasitic absorption compared with the more commonly used CdS buffer. Accordingly, we have studied solution-grown Zn(O,S) buffer layers on polycrystalline CIGS absorber layers by complementary techniques. A bandgap energy Eg of 2.9 eV is detected by means of angle-resolved electroreflectance spectroscopy corresponding to Zn(O,S), whereas an additional Eg of 2.3 eV clearly appeared for a post-annealed CIGS solar cell (250 °C in air) compared with the as-grown state. To identify the chemical phase that contributes to the Eg of 2.3 eV, the microstructure and microchemistry of the Zn(O,S) buffer layers in the as-grown state and after annealing were analyzed by different transmission electron microscopic techniques on the submicrometer scale and energy-dispersive x-ray spectroscopy. We demonstrate that the combination of these methods facilitates a comprehensive analysis of the complex phase constitution of nanoscaled buffer layers. The results show that after annealing, the Cu concentration in Zn(O,S) is increased. This observation indicates the existence of an additional Cu-containing phase with Eg close to 2.3 eV, such as Cu2Se (2.23 eV) or CuS (2.36 eV), which could be one possible origin of the low power conversion efficiency and low fill factor of the solar cell under investigation.

Funder

German Federal Ministry for Economic Affairs and Climate Action

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3