Ground state spectroscopy and photochemistry of HAlOH

Author:

Trabelsi Tarek1ORCID,Francisco Joseph S.1ORCID

Affiliation:

1. Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

Abstract

Ab initio calculations were carried out in order to study the electronic structure and spectroscopy of cis-HAlOH, trans-HAlOH, H2AlO, and AlOH2. The cis structure is more stable than the trans, and both are thermodynamically stable relative to the AlOH + H dissociation limit. A set of spectroscopic constants were generated for the lowest stable isomers to help with their detection in the laboratory and in the interstellar medium. The first excited state absorbs strongly in the visible region (λ = 460 nm), with a predicted transition dipole moment of 2.07 D. The electronic structures of the first excited state were calculated, including the lifetime, adiabatic excitation energy, rotational constants, and frequencies. We have shown that both isomers may be suitable for laser-induced fluorescence detection. Finally, photodissociation of the cis- and trans-HAlOH isomers is a plausible mechanism for the production of AlOH and H.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3