Investigation of simultaneous carrier/phonon scattering and bipolar conduction effects in inorganic/organic composites: Implications for thermoelectric performance

Author:

Kim Cham1ORCID,Kim Kyo-eun12,Cho Jaehun1ORCID,Lopez David Humberto3ORCID

Affiliation:

1. Daegu Gyeongbuk Institute of Science and Technology (DGIST) 1 , 333 Techno Jungang-daero, Daegu 42988, Republic of Korea

2. Department of Advanced Materials Engineering, Keimyung University 2 , 1095 Dalgubeol-daero, Daegu 24601, Republic of Korea

3. Department of Chemical and Environmental Engineering, University of Arizona 3 , 1133 E. James. E. Rogers Way, Tucson, Arizona 85721, USA

Abstract

For low-temperature thermoelectric applications, a bulk-phase inorganic/organic composite is prepared by introducing a conducting polymer, which is recognized as a potential organic thermoelectric material, into a representative inorganic thermoelectric material (n-type Bi2Te3). A conducting polymer, PEDOT:PSS, was chosen to prepare the Bi2Te3/PEDOT:PSS composite, wherein an intimate interface was formed between Bi2Te3 and PEDOT:PSS. The work function difference between Bi2Te3 and PEDOT:PSS created an energy barrier at the interface, possibly facilitating selective charge carrier transport depending on the energy levels of the carrier (i.e., energy filtering effect), thereby contributing to an enhancement in the Seebeck coefficient. The composite exhibited a completely different bipolar conduction tendency from pristine Bi2Te3, inducing a significant variation in the temperature dependence of the Seebeck coefficient. Furthermore, the interface may affect the carrier and phonon scattering probabilities, resulting in a considerable reduction in thermal conductivity. The composite adjustment was intensively studied to regulate the electrical and thermal properties using the energy filtering effect along with the carrier and phonon scattering probabilities, resulting in a noticeably enhanced thermoelectric performance. The temperature dependence of the performance was effectively adjusted using the bipolar conduction tendency, thereby affording the Bi2Te3/PEDOT:PSS composite exhibiting consistently high ZT values over the wide temperature range of 25–275 °C. The thermoelectric performance of Bi2Te3/PEDOT:PSS was competitive with that of previously reported high-performance n-type Bi2Te3-based analogs. The Bi2Te3/PEDOT:PSS composite is a promising n-type candidate for diverse low-temperature thermoelectric applications as a p-type Bi2Te3 counterpart.

Funder

Ministry of Science and ICT, South Korea

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3