A new canonical reduction of three-vortex motion and its application to vortex-dipole scattering

Author:

Anurag A.1ORCID,Goodman R. H.1ORCID,O'Grady E. K.1ORCID

Affiliation:

1. Department of Mathematical Sciences, New Jersey Institute of Technology , 323 Martin Luther King Blvd., Newark, New Jersey 07102, USA

Abstract

We introduce a new reduction of the motion of three point vortices in a two-dimensional ideal fluid. This proceeds in two stages: a change of variables to Jacobi coordinates and then a Nambu reduction. The new coordinates demonstrate that the dynamics evolve on a two-dimensional manifold whose topology depends on the sign of a parameter κ2 that arises in the reduction. For κ2>0, the phase space is spherical, while for κ2<0, the dynamics are confined to the upper sheet of a two-sheeted hyperboloid. We contrast this reduction with earlier reduced systems derived by Gröbli, Aref, and others in which the dynamics are determined from the pairwise distances between the vortices. The new coordinate system overcomes two related shortcomings of Gröbli's reduction that have made understanding the dynamics difficult: their lack of a standard phase plane and their singularity at all configurations in which the vortices are collinear. We apply this to two canonical problems. We first discuss the dynamics of three identical vortices and then consider the scattering of a propagating dipole by a stationary vortex. We show that the points dividing direct and exchange scattering solutions correspond to the locations of the invariant manifolds of equilibria of the reduced equations and relate changes in the scattering diagram as the circulation of one vortex is varied to bifurcations of these equilibria.

Funder

National Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3