Adaptable reservoir computing: A paradigm for model-free data-driven prediction of critical transitions in nonlinear dynamical systems

Author:

Panahi Shirin1ORCID,Lai Ying-Cheng12ORCID

Affiliation:

1. School of Electrical, Computer, and Energy Engineering, Arizona State University 1 , Tempe, Arizona 85287, USA

2. Department of Physics, Arizona State University 2 , Tempe, Arizona 85287, USA

Abstract

A problem in nonlinear and complex dynamical systems with broad applications is forecasting the occurrence of a critical transition based solely on data without knowledge about the system equations. When such a transition leads to system collapse, as often is the case, all the available data are from the pre-critical regime where the system still functions normally, making the prediction problem challenging. In recent years, a machine-learning based approach tailored to solving this difficult prediction problem, adaptable reservoir computing, has been articulated. This Perspective introduces the basics of this machine-learning scheme and describes representative results. The general setting is that the system dynamics live on a normal attractor with oscillatory dynamics at the present time and, as a bifurcation parameter changes into the future, a critical transition can occur after which the system switches to a completely different attractor, signifying system collapse. To predict a critical transition, it is essential that the reservoir computer not only learns the dynamical “climate” of the system of interest at some specific parameter value but, more importantly, discovers how the system dynamics changes with the bifurcation parameter. It is demonstrated that this capability can be endowed into the machine through a training process with time series from a small number of distinct, pre-critical parameter values, thereby enabling accurate and reliable prediction of the catastrophic critical transition. Three applications are presented: predicting crisis, forecasting amplitude death, and creating digital twins of nonlinear dynamical systems. Limitations and future perspectives are discussed.

Funder

Air Force Office of Scientific Research

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3