Density-unweighted subgrid-scale models for large-eddy simulations of compressible turbulence

Author:

Zhang Chao123ORCID,Yuan Zelong123ORCID,Wang Yunpeng123ORCID,Zhang Ruibo4ORCID,Wang Jianchun123ORCID

Affiliation:

1. National Center for Applied Mathematics Shenzhen (NCAMS), Southern University of Science and Technology, Shenzhen 518055, China

2. Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China

3. Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications, Southern University of Science and Technology, Shenzhen 518055, China

4. State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China

Abstract

Density-unweighted methods in large-eddy simulations (LES) of turbulence have received little attention, and the modeling of unclosed terms using density-unweighted methods even less. We investigate the density-unweighted subgrid-scale (SGS) closure problem for LES of decaying compressible isotropic turbulence at initial turbulent Mach numbers 0.4 and 0.8. Compared to the LES with Favre (density-weighted) filtering, there are more unclosed SGS terms for density-unweighted LES, which can be reconstructed using different SGS models, including the gradient model (GM), approximate deconvolution model (ADM), dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and the dynamic iterative approximate deconvolution (DIAD) models proposed by Yuan et al. “Dynamic iterative approximate deconvolution models for large-eddy simulation of turbulence,” Phys. Fluids 33, 085125 (2021). We derive GM models suitable for density-unweighted methods. We also, for the first time, apply the DIAD model to investigate compressible turbulence. In the a priori tests, the correlation coefficients of the GM, ADM, and DIAD models are larger than 0.9. Particularly, the correlation coefficients of DIAD models exceed 0.98 and the relative errors are below 0.2, which is superior to that in other SGS models. In the a posteriori tests of the density-unweighted LES, the DIAD model shows great advantages over other SGS models (including GM, ADM, DSM, and DMM models) in predicting the various statistics and structures of compressible turbulence, including the velocity spectrum, probability density functions (PDFs) of SGS fluxes and the instantaneous spatial structures of SGS heat flux, SGS kinetic energy flux, and vorticity.

Funder

National Natural Science Foundation of China

National Numerical Wind Tunnel Project of China

Shenzhen Science and Technology Program

Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory

Department of Science and Technology of Guangdong Province

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3