Generation of imprinted strain gradients for spintronics

Author:

Masciocchi G.12ORCID,Fattouhi M.3ORCID,Spetzler E.4ORCID,Syskaki M.-A.15ORCID,Lehndorff R.6ORCID,Martinez E.3ORCID,McCord J.47ORCID,Lopez-Diaz L.3ORCID,Kehlberger A.2ORCID,Kläui M.1ORCID

Affiliation:

1. Institute of Physics, Johannes Gutenberg University Mainz 1 , Staudingerweg 7, Mainz 55099, Germany

2. Sensitec GmbH 2 , Walter-Hallstein-Straße 24, Mainz 55130, Germany

3. Department of Applied Physics, Universidad de Salamanca 3 , Salamanca E-37008, Spain

4. Institute for Materials Science, Kiel University 4 , Kaiserstraße 2, Kiel 24143, Germany

5. Singulus Technologies AG 5 , Hanauer Landstrasse 107, Kahl am Main 63796, Germany

6. Allegro MicroSystems Germany GmbH 6 , Vangerowstraße 18/1, Heidelberg 69115, Germany

7. Kiel Nano, Surface and Interface Science (KiNSIS) 7 , Kaiserstraße 2, Kiel 24143, Germany

Abstract

In this work, we propose and evaluate an inexpensive and CMOS-compatible method to locally apply strain on a Si/SiOx substrate. Due to high growth temperatures and different thermal expansion coefficients, a SiN passivation layer exerts a compressive stress when deposited on a commercial silicon wafer. Removing selected areas of the passivation layer alters the strain on the micrometer range, leading to changes in the local magnetic anisotropy of a magnetic material through magnetoelastic interactions. Using Kerr microscopy, we experimentally demonstrate how the magnetoelastic energy landscape, created by a pair of openings, enables in a magnetic nanowire the creation of pinning sites for in-plane vortex walls that propagate in a magnetic racetrack. We report substantial pinning fields up to 15 mT for device-relevant ferromagnetic materials with positive magnetostriction. We support our experimental results with finite element simulations for the induced strain, micromagnetic simulations, and 1D model calculations using the realistic strain profile to identify the depinning mechanism. All the observations above are due to the magnetoelastic energy contribution in the system, which creates local energy minima for the domain wall at the desired location. By controlling domain walls with strain, we realize the prototype of a true power-on magnetic sensor that can measure discrete magnetic fields or Oersted currents. This utilizes a technology that does not require piezoelectric substrates or high-resolution lithography, thus enabling wafer-level production.

Funder

HORIZON EUROPE Marie Sklodowska-Curie Actions

Deutsche Forschungsgemeinschaft

Österreichische Forschungsförderungsgesellschaft

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3