Exploring electron donor and acceptor effects: DFT analysis of ESIPT/GSIPT in 2-(oxazolinyl)-phenols for photophysical and luminophore enhancement

Author:

Panneerselvam Murugesan1ORCID,Francis Reshma Rensil2ORCID,Nathiya Singaravel1ORCID,Solomon Rajadurai Vijay2ORCID,Jaccob Madhavan3ORCID,Costa Luciano T.1ORCID

Affiliation:

1. MolMod-CS–Instituto de Química, Campos de Valonginho, Universidade Federal Fluminense 1 , Centro, Niterói, 24020-14 Rio de Janeiro, Brazil

2. Department of Chemistry, Madras Christian College (Autonomous) [Affiliated to University of Madras] 2 , Tambaram East, Chennai 600059, Tamil Nadu, India

3. Department of Chemistry, Loyola College (Autonomous) 3 , Nungambakkam, Chennai 600034, Tamil Nadu, India

Abstract

Understanding excited-state intramolecular proton transfer (ESIPT) is essential for designing organic molecules to enhance photophysical and luminophore properties in the development of optoelectronic devices. In this context, an attempt has been made to understand the impact of substituents on the ESIPT process of 2-(oxazolinyl)-phenol. Electron donating (EDG: –NH2, –OCH3, and –CH3) and electron withdrawing (EWG: –Cl, –Br, –COOH, –CF3, –CN, and –NO2) substitutions have been computationally designed and screened through density functional theory (DFT) and time-dependent density-functional theory (TDDFT) calculations. Furthermore, the ground state intramolecular proton transfer and ESIPT mechanisms of these designed luminophores are explored using the transition state theory. The results reveal that molecules with EDG show higher absorption and emission peaks than molecules with EWG and also indicate that the mobility of charge carriers in 2-(oxazolinyl)-phenol derivatives is significantly influenced by substituents. We found that the EWGs decrease the reorganization energy and increase the vertical ionization potential and electron affinity values, as well as the highest occupied molecular orbital-lowest unoccupied molecular orbital gap, compared to the EDG substituted molecules. Significantly, the excited state (S1) of the keto emission (K) form shows notably larger values for the EDG substitutions. The intersystem crossing pathway efficiency weakens with reduced spin–orbit coupling matrix element in the enol form with electron-donating substituents and vice versa in the keto form during S1–T3 transitions. Our research links intramolecular proton transfers and triplet generation, making these substituted molecules appealing for optoelectronic devices. Introducing EDGs, such as –NH2, boosts the ESIPT reaction in 2-(oxazolinyl)-phenol. This study guides designing ESIPT emitters with unique photophysical properties.

Funder

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3