Mist-CVD-derived Hf0.55Zr0.45O2 ferroelectric thin films post-annealed by rapid thermal annealing

Author:

Tanaka Sho1,Fujiwara Yuki1,Nishinaka Hiroyuki1ORCID,Yoshimoto Masahiro1ORCID,Noda Minoru1ORCID

Affiliation:

1. Electronics, Graduated School of Kyoto Institute of Technology , Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan

Abstract

We have newly applied Rapid Thermal Annealing (RTA) for the post-annealing of mist chemical-vapor-deposition (CVD)-derived Hf1−xZrxO2 (HZO) thin films. A ferroelectric polarization-electric field (P–E) curve was confirmed typically with noticeable polarization reversal currents. These ferroelectric properties of the HZO thin films provided quantitative estimation for Pr and Ec of ∼20 µC/cm2 and 1–1.5 MV/cm, respectively, compared to those reported from other growth methods, such as atomic-layer-deposition (ALD). It was revealed that the background leakage should be further reduced in a mist-CVD HZO film compared to those by ALD recently reported. The origin of the leakage was strongly related to the oxygen vacancy (Vo) generated in the film and near the HZO/bottom electrode interface. Nonetheless, it was found effective to use atmospheric pressure in air or oxygen in the post-RTA process for reducing leakage. In general, endurance behaviors for the mist-CVD HZO film revealed similar to those for samples prepared by other methods for both “wake-up” and “fatigue” phenomena, showing that the mist-CVD HZO film endured up to 2 × 109 counts. Finally, we expect that the mist-CVD HZO thin film would become a candidate for fabricating large-scale integration-oriented ferroelectric devices due to the intrinsic merits of the method.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3