Simulation of nuclear magnetic resonance response based on the high-resolution three-dimensional digital core

Author:

Gao FeimingORCID,Xiao LiangORCID,Jin Yuan,Li Jiaqi

Abstract

Numerical simulation of nuclear magnetic resonance (NMR) can simulate experimental scenarios and quantify the impact of each factor on the physical characteristics. However, general simulation methods lack authentic pore structure information and fail to accurately model the complex geometry of rocks. High-resolution digital rock cores can effectively reflect pore structure. In this paper, a high-resolution digital core of Berea sandstone is taken as the research object, the pore parameters of the core (e.g., pore volume and surface-to-volume ratio) are quantified, and the 12 529 pores extracted from the three-dimensional digital core are statistically analyzed. Subsequently, the pores are classified based on their surface-to-volume ratio and volume. After the simulation parameters are calibrated by the experiments, NMR response of different water-saturated pores is simulated. Finally, the NMR response of the core with different oil saturation is simulated. We find that the distribution of pore quantity in terms of volume and surface area both follows a power function. There is a strong correlation between pore volume and surface area, especially for smaller pores. The T2 (transverse relaxation time) spectrum can generally reflect the volume distribution, but it may not accurately reflect the volume distribution when the pores are large. We also observe that the spectrum peak reflecting oil bulk relaxation is positioned to the left of the peak of the oil bulk relaxation due to the combined effects of surface relaxation of residual water and diffusion relaxation. These simulation results provide a physical basis for interpreting NMR measurements and can help identify fluids in reservoirs.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3